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Abstract 

Every year the United States Department of Agriculture’s National Agricultural Statistics 

Service (NASS) conducts the June Area Survey (JAS). The JAS is based on an area frame, which 

provides complete coverage of the contiguous U.S. The data collected from the JAS are used to 

supply direct estimates of acreage and measures of sampling coverage for NASS’s list frame, 

which consists of all known farms in the U.S. The JAS is NASS’s largest annual survey, and, 

prior to the COVID-19 pandemic, had always been conducted via personal interviews. Due to the 

pandemic, the JAS was not carried out in 2020. In 2021 it was conducted by mail and telephone, 

and in 2022 limited personal interviews were allowed. Moreover, a new mobile survey 

instrument was made available as of 2021, granting field interviewers the ability to collect data 

via web-enabled tablets as an alternative to the traditional paper questionnaire. These shifts in 

data collection mode impacted the ability of field interviewers to use familiar methods during 

interviews. In conjunction with these changes, NASS developed new data analysis tools that 

integrated administrative, remotely sensed, and other data sources to aid in imputing the 

nonresponse records. This paper examines JAS data quality under evolving data collection and 

imputation paradigms by characterizing survey response across 2019, 2021, and 2022. 

Additionally, JAS record-level corn and soybean acreages are compared with corresponding, 

gold-standard administrative data for the same years. Response rates decreased substantially 

when the primary data collection mode was changed from in-person interviews to telephone 

interviews. Across all study years, data quality was minimally affected, particularly for records 

for which full survey responses were received. In 2022, the use of a mobile instrument during 

personal interviews was associated with significantly lower data quality than other modes.  

 

Key words: nonresponse, area frame, survey mode, data quality, data collection, administrative 

data, CATI, multiple data sources, imputed data, in-person interviews 

 

1. Introduction and Background 

 

In recent years, many United States (U.S.) federal statistical agencies have been facing declining 

response rates across surveys (Czajka and Beyler 2016, Johansson et al. 2017) as well as 

relatively flat budgets (Citro et al. 2024). This has necessitated an increased investment in 

resources to achieve similar data quality. The onset of the COVID-19 pandemic brought even 

more need for new and creative survey methodologies to focus, as data collection modes were 

limited to only those conducted from a distance. Research has shown that overall personal 

interviews provide better quality data (Heerwegh et al. 2008, Blumberg et al. 2021). Thus, the 

changes to survey methodologies observed during the height of the pandemic caused questions to 

arise regarding the quality of survey data collected during that time.  

 

The U.S. Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) 

had conducted the June Area Survey (JAS) via in-person interviews annually since 1954. When 

the pandemic struck, NASS had to pivot away from in-person interviews, raising concerns about 



the resulting quality of the collected data. In this paper, the data quality measures JAS data 

collected pre-pandemic (2019), during the pandemic (2021), and post-pandemic (2022) are 

compared.  

 

The JAS is one of NASS’s largest and most costly programs aside from the quinquennial Census 

of Agriculture. The nature of the JAS is tripartite as it relates to the Agency’s mission (Cotter et 

al. 2010). First, it provides an annual measure for the number of farms and land in farms in the 

U.S. Second, the JAS produces direct estimates of large crop commodities such as corn, 

soybeans, and wheat, among others. Finally, the JAS is used to measure the incompleteness of 

the NASS list frame. 

 

The JAS is based upon an area frame, which ensures complete coverage of all land within the 48 

contiguous U.S. For each state, land within the area frame is divided into homogeneous strata 

based on percent cultivated land and further into substrata based on similarity of agriculture. The 

land within each substratum is divided into primary sampling units (PSUs). PSUs are sampled 

from each substratum with replacement using stratified simple random sampling to target major 

agricultural commodities. Then smaller, similar-sized segments of land (about one square mile or 

640 acres) are delineated within each selected PSU. One segment is randomly sampled from 

each selected PSU to be fully enumerated during the JAS (see Figure 1). 

 

        
Figure 1. NASS area sampling frame for North Carolina. 

 

The JAS has a rotating panel design where approximately twenty percent of the sample is 

replaced with new segments annually, and segments that have been in the sample for five years 

are rotated out.  

 

In March 2020, during the initial phases of the pandemic, NASS did not have time to evolve its 

data collection processes for the 2020 JAS. Thus, the difficult decision was made to not conduct 

the 2020 JAS. Due to the continuing nature of the pandemic, in October 2020, NASS leadership 

made the decision to conduct the 2021 JAS without any in-person interviews. This decision led 



to numerous changes in the data collection process, which are described in Section 2. For the 

2022 JAS, many of the 2021 data collection changes were operationalized, and a limited number 

of in-person interviews were conducted.  

 

When shifting to a different mode of data collection for the JAS, the primary question was how 

this would affect the overall quality of the JAS data. This paper focuses on the impact on unit-

level reports of planted corn and soybean acreage. Using administrative data, the JAS data 

quality was assessed and compared for 2019 (pre-pandemic data), 2021 (in-pandemic data), and 

2022 (post-pandemic data) as described in Section 3. The results of this data quality assessment 

are provided in Section 4. In the final section, the strengths and weaknesses of the revised 

processes as well as the future of the JAS data collection are discussed.    

 

Section 2. JAS data collection 

 

Section 2.1. Pre-pandemic data collection 

 

The newly rotated-in segments (new segments) are prescreened in May, prior to the June data 

collection period, to identify segment boundaries (outlined in white in Figure 3), agricultural and 

non-agricultural areas within the segment, and the name and address (N&A) information of 

possible owners and operators. Field interviewers are provided N&A information from the Farm 

Service Agency (FSA), plat maps, county segment maps, and other resources to help with the 

prescreening (Figure 2). They are also instructed to conduct internet searches in their attempt to 

determine who operates the land. For previously enumerated segments (old segments) the names 

and addresses are available from the previous year. Yet many of the older segments still need 

improvements on the N&A information. 

 

 
      Figure 2. JAS Survey Materials. 

 

Field interviewers are provided a paper aerial photograph showing the sampled segment area 

(Figures 2 and 3). Interviewers must account for all land inside the segment boundary. They 

divide each segment into tracts of land (outlined in black in Figure 3). Obvious non-agricultural 

areas, such as roads, rivers, etc., are assigned a tract letter and automatically classified as a non-

agricultural tract. Each of the remaining tracts of land is assigned a tract letter that represents a 

unique land operating arrangement. These tracts are then screened for agricultural activity and 



classified as either an agricultural tract or a non-agricultural tract.  

  

 

 
Figure 3. The area outlined in white is the segment. Tracts are outlined in black and labeled with 

white letters. 

 

JAS data collection is conducted during the first two weeks of June when field interviewers 

return to interview only the agricultural tract farm operators. Because the primary purpose of the 

JAS is to provide crop and livestock acreages, field interviewers spend most of their 

prescreening time on improving the information on the agricultural tracts for new segments.  

 

2.2. Pandemic Data Collection 

 

For the 2021 JAS, all data were collected via computer-assisted telephone interviews (CATI). To 

enable CATI to be feasible, numerous changes were made in the JAS pre-survey and survey 

processes, requiring the survey timeline to be adjusted (Figure 4). 

 



 
Figure 4. 2021 JAS Data Collection Timeline. 

 

During the JAS’s prescreening period, information for older segments is normally not reviewed. 

For 2021, this information was retained, reviewed, and utilized to build a master mail list. 

Because interviewers could not prescreen the land to identify who owned and operated it, an 

interactive tool, called the pre-prescreening tool, was built to identify potential operators of the 

land (Figure 5). This tool allowed field office staff to view the land spatially. Each new segment 

was spatially screened, and name, address, and telephone information were linked to it to build 

the mail list. A listing with names and addresses of potential producers was prepared for all tracts 

in old as well as new segments. The producers were then mailed a sample packet, with segment 

maps and copies of the questionnaire, before starting prescreening in March 2021. An example 

mailed segment map is shown in Figure 6. These were mailed to inform respondents they would 

be contacted via phone during the data collection period, and to ensure that respondents and 

interviewers were referring to the correct geospatial areas during the interview. Similar processes 

were followed for the 2022 JAS. 

 

 
Figure 5. Screenshot of the Pre-Prescreening Tool. 
 



 
Figure 6. Example of a segment map that was mailed. 

 

A mobile instrument was developed for collecting responses. This survey instrument enabled 

interviewers to enter JAS data collected via a web application installed on iPads, which they 

were using to collect data for other surveys. This mobile instrument was presented as an optional 

alternative to the traditional paper questionnaire and was available to interviewers conducting 

personal (pre- and post-pandemic) or telephone (pandemic and post-pandemic) interviews. 

 

Some respondents refused to participate or were inaccessible. As a result, tract-level information 

had to be hand imputed. This manual imputation is standard for the JAS; however, the amount of 

imputation during normal survey conditions is less than what was anticipated in 2021. To 

prepare for this, the June Area Land Tool was released. This tool uses historical crop-type 

mapping via the Cropland Data Layer (CDL) (Boryan et al. 2011), in-season predictions, and 

FSA administrative data, which will be more fully described in Section 3, to impute JAS tracts 

whenever the information is available (Figure 7).  

 



  
Figure 7. Screenshot of June Area Land Tool. 

 

Historically, maps are stored after the end of each JAS survey cycle at their respective regional 

field office. In 2021, the Agency allocated resources to a new JAS tract digitization effort. For 

this effort, all tracts in the 2021 JAS sample were digitized, and all new segments rotating into 

the sample in subsequent years were digitized immediately following the data collection period. 

Tract-level information, such as boundary lines and tract IDs corresponding to tabulated tract-

level data, are updated on the JAS photo enlargements of sampled segments during the survey 

period. NASS staff use the photo enlargements as reference to draw digital tract boundaries 

using GIS software. These newly digitized records are uploaded to a centralized database where 

they can be utilized for analysis.  

 

3.  Assessing Quality 

 

The 2021 JAS data collection was conducted using telephone interviews, a complete change in 

mode from the 2019 and earlier JAS in-person data collection. Numerous changes were made in 

the JAS process to accommodate this shift in mode. They could improve the survey process for 

in-person interviews as well. And, they could have an impact on data quality for either data 

collection mode. Because the mode of data collection is completely confounded with the other 

changes, any change in data quality cannot be directly attributable to the change in mode but 

reflects the overall effect of changes in mode and survey processes on data quality. This will be 

discussed more fully in Section 5. 

 

When available, data from the FSA are the gold standard for determining what crop was grown 

in a specific agricultural field. Farmers participating in USDA programs or purchasing crop 

insurance report their crop plantings each year on the FSA-578 form. Data from these reports are 

linked to parcels of land via FSA Common Land Unit (CLU) polygons (USDA 2017). FSA 

CLUs are digital, geospatially referenced polygons that correspond with crop field boundaries 

(Figure 8).  

 



 
Figure 8. An example of FSA CLUs, outlined in black. Each polygon represents an agricultural 

field, excluding non-agricultural areas such as farmsteads.  

 

The deadline for submitting the FSA-578 form varies with crop and region, but is generally July 

15th in the major corn-producing areas of the U.S. Further, the producer can update FSA-578 

data during the growing season. For this study, final FSA-578 data available at the end of the 

2019, 2021, and 2022 growing seasons were used as ground-reference for the corresponding 

years of JAS data.  JAS digitized tract boundaries were used to link survey data with the FSA 

administrative data by performing a spatial join between the digitized tract boundaries and FSA 

CLUs. The spatial join was performed under the condition that the FSA CLU centroid must be 

contained within a JAS digitized tract to be linked to that tract. By this process, all reported 578 

data could be spatially linked to a digitized tract via the CLUs. Some FSA data were lost due to 

mismatches between IDs in the 578 reports and the CLU files. Additionally, it is technically 

possible that the spatial join method results in a loss of FSA data. For example, if a large field 

overlaps a JAS digitized tract but the centroid is outside of the tract, it would be excluded from 

the join. However, agreement between crop fields delineated by digitized tracts and FSA CLUs 

was good, since similar rules were observed for their creation, primarily avoiding cutting across 

homogenous fields. For 2019 data, the 2021 digitized tracts had to be used, resulting in a loss of 

about 20% of the 2019 segments that were rotated out of the sample and replaced with new 

segments in 2021. It was assumed that tract boundaries changed minimally between the two 

years. 

 

Additionally, digitized tract acreages and JAS tract acreages did not always agree. This resulted 

either from errors in the digitization process, errors in survey reporting/imputing, or both. Tracts 

where high levels of disagreement in terms of absolute error (AE) between JAS acreage and 

digitized acreage occurred were not used in the analysis. AE is defined as, 



 

𝐴𝐸 = |𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑜𝑟 𝐼𝑚𝑝𝑢𝑡𝑒𝑑  𝐽𝐴𝑆  𝐴𝑐𝑟𝑒𝑎𝑔𝑒 − 𝐷𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑 𝑡𝑟𝑎𝑐𝑡 𝑎𝑐𝑟𝑒𝑎𝑔𝑒|. 

 

Tracts with high disagreement were identified as outliers by the interquartile range (IQR) 

approach. By this rule, 

 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 𝑜𝑓 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 =  𝑄1𝐴𝐸  −  1.5(𝑄3𝐴𝐸 − 𝑄1𝐴𝐸  )  
𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 𝑜𝑓 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 =  𝑄3𝐴𝐸  +  1.5(𝑄3𝐴𝐸 − 𝑄1𝐴𝐸  ) 

𝑄1𝐴𝐸 = 𝑙𝑜𝑤𝑒𝑟 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑜𝑓 𝐴𝐸 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑄3𝐴𝐸 = 𝑢𝑝𝑝𝑒𝑟 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑜𝑓 𝐴𝐸 𝑣𝑎𝑙𝑢𝑒𝑠 

 

This resulted in an approximately 11% loss of agricultural tracts each year, with 1,821 tracts 

being removed from analysis for 2019, 2,317 tracts being removed for 2021, and 2,432 tracts 

being removed for 2022. As a result of all linking activities and outlier removal, 13,957 

agricultural tracts were available for analysis in 2019, 18,829 in 2021, and 19,269 in 2022.  

 

3.1. Measures of Data Quality 

 

Three measures of data quality are considered: response rate, misclassification rate, and mean 

error of acres planted to corn (soybeans) for all available tracts.  

 

Response rate was derived by combining information from two questionnaire items: the 

questionnaire-level response code and the tract information source indicator. The questionnaire-

level response code indicated whether there was (1) a full response, (2) some or all the 

questionnaire items were refused by the respondent, or (3) the target respondent was inaccessible 

by the field interviewer assigned to that tract. The tract information source indicator specified 

whether the tract-level data largely originated from an interview with the respondent, observation 

by the field interviewer, or auxiliary data sources such as previously reported data or geospatial 

data contained in the June Area Land Tool. The complex combinations of questionnaire-level 

response coding and tract information source indication made it difficult to state with confidence 

the exact source of imputed information. JAS tract crop acreages may be based on a combination 

of information from interviews, observations, and auxiliary information. Additionally, 

questionnaire response behaviors are not mutually exclusive in the JAS (e.g., partial 

questionnaire refusals). For this reason, only those tracts where the questionnaire-level response 

code indicated a response and the tract information source indicator indicated an interview were 

categorized as responded. All other combinations of response codes for these two variables were 

fully or partially imputed in some way, and those tracts were considered to be imputed. 

 

Although CLUs were originally designed to have a single crop, a small minority of them have 

multiple crops. JAS tracts can also have multiple crops. Thus, a JAS tract is said to have been 

correctly classified with respect to corn (soybeans) if (1) the corresponding CLU had the 

reported crop and (2) the number of acres reported or imputed as corn (soybeans) was within 

10% of the FSA reported data for the corresponding CLU. For this assessment, the Absolute 

Percent Error (APE) is defined as 

 



𝐴𝑃𝐸𝑐𝑟𝑜𝑝 = 100 |1 −
𝐽𝐴𝑆 𝑐𝑟𝑜𝑝 𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖

𝐹𝑆𝐴 𝑐𝑟𝑜𝑝 𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖
| 𝐹𝑆𝐴 𝑐𝑟𝑜𝑝𝑖 > 0| 

where 𝐹𝑆𝐴 𝑐𝑟𝑜𝑝 𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖 is a positive number of acres planted to corn or soybeans in FSA tract 

i.  If 𝐴𝑃𝐸𝑐𝑟𝑜𝑝 <  10%, the JAS tract is said to have been correctly classified with respect to that 

crop: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑐𝑟𝑜𝑝 = {
1, 𝑖𝑓 𝐴𝑃𝐸𝑐𝑟𝑜𝑝 <  10%

0, 𝑖𝑓 𝐴𝑃𝐸𝑐𝑟𝑜𝑝 > 10%  
 

 

 

The acres planted to corn (soybeans) is an important component in forecasting corn (soybean) 

production. To assess field-level error in reporting corn (soybean) acreage, two components are 

considered: (1) whether the correct crop is reported and (2) whether the reported acreage is 

correct. Given the FSA-578 fields that have corn (soybeans), the mean error (ME) is defined to 

be the average difference in the FSA and JAS reported crop acreage across all FSA-reported corn 

(soybean) fields.  

𝑀𝐸 =  
∑ (𝐹𝑆𝐴 𝑐𝑟𝑜𝑝 𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖 − 𝐽𝐴𝑆 𝑐𝑟𝑜𝑝 𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖)𝑖

𝑛
 

where 𝑖 =  𝑡𝑟𝑎𝑐𝑡𝑠  and 𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑡𝑠 . 
 

3.2. Analysis of Speculative Region 

 

Within the U.S., the crop forecasts for corn and soybeans are defined by law as speculative 

because these crops, among others, are traded on the commodity market. For each speculative 

crop, NASS identifies a speculative region composed of the top producing states. For this report, 

the assessment focused on the ten corn speculative region states and the eleven soybean 

speculative region states in the U.S. (see Figure 9). The corn and soybean speculative regions 

include Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Minnesota (MN), Missouri (MO), 

Nebraska (NE), Ohio (OH), and South Dakota (SD). The corn speculative region additionally 

includes Wisconsin (WI), and the soybean speculative region includes Arkansas (AR) and North 

Dakota (ND). For each analysis, this paper breaks down the review at the speculative region, 

non-speculative region, and all U.S. states.  

 



 
Figure 9.  Top producing corn and soybean states in the U.S. – speculative region states. 

  

3.3. Analysis of Data Quality 

 

The data collection mode was entirely Paper Assisted Personal Interview (PAPI) in 2019, as had 

been the norm for over 50 years. In 2021, the data collection mode was entirely conducted by 

telephone, and interviewers either used Paper Assisted Telephone Interview (PATI) or Computer 

Assisted Telephone Interview on mobile device (mCATI) via a newly developed instrument. In 

2022, interviewers were encouraged to use telephone interviews but were once again allowed to 

conduct personal interviews via PAPI or the new Computer Assisted Personal Interview on a 

mobile device (mCAPI).  

 

Although primary interest here lies in the effects of data collection mode on response quality, the 

numerous changes made to the JAS survey process could have also affected the JAS data quality. 

The non-mode changes were introduced for the 2021 JAS and continued for the 2022 JAS. For 

comparisons of data quality between 2019 and 2021 or between 2019 and 2022, mode effects are 

confounded with other process changes implemented as well as any year effect. Comparisons 

between 2021 and 2022 also have a year effect, if any, but are not subject to confounding due to 

changes in the survey process. Additionally, 2021 and 2022 allow for comparisons of data 

quality between cases where paper questionnaires were used by interviewers and where 

computerized questionnaires on mobile device were used. The modes used over the three study 

years are summarized in Table 1. 

 

 

 

 



Table 1. Breakdown of Survey Mode Used for Each Year 

Mode\Year 2019 2021 2022 

PAPI 100%  16% 

PATI  78% 58% 

mCAPI   5% 

mCATI  22% 21% 

 

As noted above, all unit and item nonresponse for tract-level data were imputed. Because 

reported data should be better than imputed data, it is important to assess how the change in 

modes and survey processes impacted the response rate. A logistic regression was fit using 

SAS’s GLIMMIX procedure to assess whether the response rate differed significantly among the 

years or between the speculative (spec) and non-speculative (non-spec) regions, as well as the 

potential interaction between years and regions. All in-scope data were considered for this 

model. Given the heavy overlap of the two areas, the corn spec region and soybean spec region 

were combined into a single “combined spec region” for this model. 

 

Additionally, two separate logistic regression models were fit to assess whether classification 

accuracy rates of corn or of soybeans differed significantly among years, between the respective 

spec and non-spec regions, or between reported data and imputed data, as well as the potential 

two-way interactions among these three covariates. The response variable indicated whether each 

JAS tract identified as having corn (soybeans) was planted to corn (soybeans) according to the 

corresponding FSA data. 

    

3.4. Mode Impact on Crop Acreage Classification Accuracy 

 

Two separate logistic regression models were fit to investigate the impact of survey response, 

survey mode, and tract characteristics on a JAS tract being correctly classified as corn or 

soybeans. The covariates considered in the corn and the soybean models are the same. Only the 

2022 survey is considered here because this was the only year all four modes of data collection 

were available to the survey interviewers. The response variable is an indicator variable for 

correct classification. The main-effect covariates are as follows: 

• TractAcres is the total number of acres of the JAS tract. 

• Stratum is a categorical variable indicating expected degree of cultivation within a tract. 

Lower strata (e.g., strata 10 and 20) indicate higher levels of cultivation. Stratum 30 is 

reserved for areas with high urbanicity compared to undeveloped or agricultural lands. 

Stratum 40 represents areas of little to no cultivation.  

• SpecRegion is an indicator variable of whether the tract resides in the crop speculative 

region.  

• Response is an indicator variable of whether the tract data resulted from a full response. 

• Mode is a categorical variable indicating the primary data collection mode used for the 

tract. 

In addition, all two-way interactions were included. As before, the GLIMMIX function in SAS 

was used to estimate the coefficients for the above model. 

 

 

 



4. Results 

 

For the analysis of response rates, the interaction between year and region was not significant, 

indicating that the difference in spec and non-spec regions did not differ significantly with year. 

Compared to the 2019 pre-pandemic response rates, the response rates were significantly lower 

in 2021 (p < 0.0001) and 2022 (p < 0.0001) when, respectively, no and limited in-person 

interviews were conducted. However, the change in response rate was marginally significant 

between 2021 and 2022 (p =0.0827). Further, the response rate was consistently significantly 

lower in the combined spec region than the rest of the country (see Figure 10). For this and other 

models, interpretation of model coefficients is under the assumption that all other variables are 

held constant. Additionally, the inverse-link transformation was applied to transform log odds to 

outcome probabilities for the purpose of easier interpretation.  

  
Figure 10.  Estimated probability of response for the combined spec region (1) versus the non-

spec region (0) for 2019, 2021, and 2022 with 95% confidence bands. 

 

When assessing differences in classification accuracies across years, the results differed for corn 

and soybeans (see Figure 11). For corn, the interactions between year and response, year and 

region, and region and response were all significant. For soybeans, only the region and response 

interaction was significant. For corn, 2021 had a classification accuracy of 91.95%, which was 

significantly higher than either 2019 or 2022, though 2019 and 2022 were not significantly 

different from one another. However, all classification accuracies differed by less than 2%. For 
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Response Rates by Year and Speculative Region Membership 



soybeans, only 2022 had significantly lower classification accuracy at 90.84%, and as was the 

case for corn, all years differed in accuracy by less than 2%. A broad summary of classification 

accuracies is provided in Table 2. 

 

The significant interaction between year and corn spec region demonstrated that in 2019, records 

in the spec region had significantly lower corn classification accuracy than records in the non-

spec states; however, 2021 and 2022 showed no significant difference in classification accuracy 

by spec region membership. While the interaction between soybean spec region and year was not 

significant for soybean classification accuracy, records in the soybean spec region consistently 

had significantly lower soybean classification accuracies for each year. The soybean 

classification accuracy across years among records in spec states was 89.82%, versus 92.5% for 

records in non-spec states. 

 

For both corn and for soybeans, year over year, classification accuracy among response cases 

was significantly higher than for imputed cases.  

 

For soybeans, among the response cases, the classification accuracies did not differ significantly 

between years, with the exception of 2019, which was significantly higher than 2022 (p = 

0.0485). For corn classification accuracy, there was more variability by year and the interaction 

between response and years was significant. Still, no coherent pattern was apparent beyond the 

significantly higher classification accuracy for response cases.  

 



  
Figure 11. Corn (top) and soybean (bottom) classification accuracies for combinations of 

spec/non-spec regions and response/imputed across years.  

 

For both corn and soybeans, there was a significant interaction between spec region membership 

and response. For both crops, imputed cases had lower accuracies than response cases, as 

expected; however, this difference was more pronounced among cases in the spec region than in 

non-spec states (Figure 12). 



 
Figure 12. The probability of correct classification based on response/imputation by spec (1) and 

non-spec (0) region for corn (left) and soybeans (right). 

 

Table 2. Classification Accuracy and Mean Error by Response for Corn and Soybean Planted Acres at the 

Tract Level 

  Classification Accuracy Mean error (Acres) 

    Corn   Soybeans   Corn   Soybeans   

 Region Responded Imputed Responded Imputed Responded Imputed Responded Imputed 

2019 Spec States 90.5% 84.2% 92.2% 85.7% 4.16 7.63 2.31 5.20 

 

Non-spec 

States 

93.4% 91.5% 94.3% 91.4% 1.59 1.42 0.52 0.51 

 USA 91.9% 87.3% 93.0% 87.8% 2.93 4.99 1.57 3.47 

2021 Spec States 94.1% 88.2% 93.1% 86.5% -1.86 -0.88 0.34 0.98 

 

Non-spec 

States 

94.2% 89.6% 94.5% 90.2% -0.84 0.43 0.02 1.28 

 USA 94.2% 88.9% 93.7% 87.9% -1.36 -0.29 0.20 1.10 

2022 Spec States 93.0% 86.4% 92.8% 85.4% -1.30 -0.85 -0.60 3.09 

 

Non-spec 

States 

92.4% 87.0% 93.6% 89.4% -0.28 1.20 -0.67 2.06 

 USA 92.7% 86.7% 93.1% 87.0% -0.79 0.08 -0.63 2.68 
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Interaction Between Speculative Region and Response 



Table 3. Classification Accuracy of Tract Planted Acreage by Mode 

    Corn     Soybeans      

Year Region PAPI PATI mCAPI mCATI PAPI PATI mCAPI mCATI 

2019 Spec States 88.1% 
   

89.7% 
   

 Non-spec States 92.8% 
   

93.4% 
   

 USA 90.2% 
   

91.2% 
   

2021 Spec States  91.7%  88.2%  90.3%  86.6% 

 Non-spec States  92.4%  91.0%  93.2%  91.1% 

 USA  92.0%  89.9%  91.4%  88.8% 

2022 Spec States 90.6% 89.7% 84.6% 89.0% 90.4% 89.5% 83.0% 87.0% 

 Non-spec States 89.6% 90.7% 86.4% 88.1% 90.9% 92.9% 88.8% 88.7% 

 USA 90.4% 90.2% 85.3% 88.5% 90.5% 91.1% 84.9% 87.9% 

Highlighted cells represent most used mode in that survey year and region. 

 

A breakdown of classification accuracy by data collection mode and year, as well as by 

speculative region membership, is provided in Table 3. The highlighted cells indicate which data 

collection modes were most prevalent in the JAS datasets, with PAPI being most common in 

2019 and PATI being most common for both 2021 and 2022. The final set of models (one for 

corn and the other for soybeans) explores the impact of Mode on classification accuracy in 2022; 

the potential effects of TractAcres, Stratum, Response, and SpecRegion and the interaction of 

Mode with these covariates are also evaluated. The full set of regression model parameters and 

interaction effects for both the corn and soybean models are shown in Tables 4 and 5, 

respectively. 

 

Table 4. Logistic Regression Model Parameters (Corn 

Acreage) 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

TractAcres 3 18791 5.19 0.0014 

Stratum 2 18791 5.08 0.0062 

SpecRegion 1 18791 0.45 0.504 

Response 1 18791 160.32 <.0001 

Mode 3 18791 3.58 0.0132 

TractAcres*Stratum 6 18791 2.87 0.0085 

Stratum*Mode 6 18791 3.2 0.0038 

 

 

 

 

 

 

 



Table 5. Logistic Regression Model Parameters (Soybean 

Acreage) 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

TractAcres 3 19218 8.11 <.0001 

Stratum 2 19218 15.18 <.0001 

SpecRegion 1 19218 14.34 0.0002 

Response 1 19218 163.49 <.0001 

Mode 3 19218 8.71 <.0001 

TractAcres*Stratum 6 19218 4.23 0.0003 

TractAcres*SpecRegion 3 19218 8.96 <.0001 

Stratum*SpecRegion 2 19218 4.54 0.0107 

 

For both the corn and soybean models, most main effects (TractAcres, Stratum, Response, and 

Mode) were highly significant (see Tables 4 and 5). For the soybean model, SpecRegion was also 

statistically significant. Reports resulting from the 2022 JAS survey responses were associated 

with significantly higher classification accuracies than reports resulting from some form of 

imputation. Tracts where data resulted from survey responses had an estimated 4.96% higher 

probability of correct corn acreage recorded than tracts with data resulting from some form of 

imputation, and 4.25% higher probability of correct soybeans acreage recorded than tracts with 

data resulting from some form of imputation. When comparing data collection modes, mobile-

based modes had lower probabilities of correct crop acreage classification than paper-based 

modes. PAPI had 6.27% higher probability of correct corn acreage classification and 2.37% 

higher probability of correct soybean acreage than mCAPI. PATI had 5.52% higher probability 

of correct corn acreage classification and 2.5% higher the odds of correct soybean acreage than 

mCAPI.  For soybean acreage, both PAPI and PATI had, respectively, 1.35% and 1.48% higher 

probabilities of correct classification than mCATI. Meanwhile, classification accuracy did not 

differ significantly between tract data collected using the traditional PAPI or PATI. For both 

crop types, as tract sizes increased, classification accuracies increased. Similarly, stratum 40, 

which represents land with little to no cultivation, had higher classification accuracies than the ag 

strata (10, 20), which have land with higher levels of cultivation, for both crops.  

 

For the model investigating corn acreage classification accuracy, the interaction between stratum 

and tract acreage was significant. Although classification accuracies increased as tract sizes 

increased, this occurred more profoundly for stratum 40. The interaction between mode and 

stratum was also significant. Although accuracies across modes for both the ag strata (10, 20) 

were consistent, stratum 40 was reactive to different modes, showing the lowest accuracies for 

mCAPI and relatively higher accuracies for all other modes (see Figure 13). 

 



     
Figure 13. The probability of correct classification of tract-level corn acres based on stratum and 

tract size (left) and survey mode (right). 

 

For the model investigating soybean acreage classification accuracy, the interaction between 

stratum and tract acreage was significant (see Figure 14). Although classification accuracies 

increased as tract sizes increased, this occurred more profoundly for stratum 40. Stratum 40 

tracts also showed higher accuracies for low acreage tracts. The interactions between region and 

tract acreage, as well as between region and stratum were also significant (see Figure 15). In both 

cases, the non-spec region had higher accuracies, particularly as the acreage increased, as well as 

strata became less cultivated. This is again explained by the prevalence of tracts with no crop 

acreage in the larger, stratum 40 areas. 
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Figure 14. The probability of correct classification of tract-level soybean acres based on stratum 

and tract size. 

 

 

 

  
Figure 15. The probability of correct classification of tract-level soybean acres by spec (1) and 

non-spec (0) region and tract size (left) and stratum (right). 
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5. Conclusions and Discussion 

 

Despite the limitations set forth by the COVID-19 pandemic, NASS successfully completed the 

JAS via telephone and mail in 2021 and subsequent years. The evaluation of the JAS shows data 

quality does not always suffer when shifting away from personal interviews in data collection; 

however, more nonresponse was observed. Nonresponse has been increasing for most of NASS 

surveys, and it is not evident how much of the change in the response rates was due to the 

changes in mode or how much is associated with a continuing downward trend.  

 

Due to the shift in data collection modes, the cost of the JAS decreased substantially. Compared 

to 2019, the data collection costs of the JAS were roughly 61.5% in 2021 and 65.8% in 2022. 

Interviewers received substantial increases in their hourly wages in both 2021 and 2022; 

otherwise, the cost savings would have been greater. However, the proportion of imputed records 

was greater for 2021 and 2022 compared with 2019.  

 

The use of non-survey data sources and innovative technological mechanisms led to the 

deployment of several analysis tools that helped improve the accuracy rates of the imputed 

values as compared to reported values. The effects of these new tools and the changes in data 

collection modes are confounded when comparing results across years. In discussing the effect of 

data collection modes, it is important to remember that the changes observed from 2019 to either 

2021 or 2022 are at least partially affected by these new tools. Considering different cross 

sections of the data, the non-speculative regions for corn and soybeans are performing 

particularly well compared to the speculative regions. This can be attributed to the large 

occurrence of tracts in the non-speculative regions that simply have no planted corn or soybean 

acres, which is well reflected in both the survey data and the corresponding FSA data.  

 

Some expected relationships, such as higher data quality in high-agricultural strata and among 

full survey responses, were observed for both corn and soybean models. Overall, the models 

indicated that telephone interviews performed well. Compared to the traditional PAPI, PATI was 

found to have similar classification quality, especially in the speculative states. The standout 

mode in terms of error was mCAPI, which was significantly associated with lower quality crop 

acreage recording. Even though mCAPI is in-person, the mobile instrument was new and may 

have caused more challenges for field interviewers than gains in streamlining the data collection 

process. Although all modes were available to the interviewers for data collection in 2022, the 

mCAPI option was elected the least often.  

 

This study has shed light on the difficulty of fully capturing error resulting from the encoding of 

survey mode and survey response status. This is compounded by the plentiful partial-response 

cases. This was less of an issue in the era of JAS data collection before 2020 when the survey 

relied on a single data collection mode and imputation was more reliant on observation and 

previously reported survey data. Since then, proper reporting of data collection mode requires 

greater effort from interviewers and there are insufficient options on the JAS questionnaire to 

represent all imputation activities utilized. The new multi-modal paradigm for a survey 

increasingly relying on imputation warrants greater attention to measuring these characteristics 

of data collection to continue support of high-quality survey estimates and error reporting.  

 



Like many organizations, NASS identifies the importance of balancing saving time and 

resources with the requirement to maintain overall quality of collected data, which is required to 

achieve the goal of publishing sound and reliable official estimates. The learning curve 

experienced during the COVID-19 pandemic led to the development of innovative tools, creative 

data collections methods, and intentional acquisition of high-quality administrative data that have 

managed to maintain survey data quality, particularly in major growing regions of large 

commodities.  
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